class Query
from django.db.models.sql.query import Query
A single SQL query.
Ancestors (MRO)
- builtins.object
- django.db.models.expressions.BaseExpression
- django.db.models.sql.query.Query
Attribute | Value | Defined in |
---|---|---|
alias_prefix |
T |
django.db.models.sql.query.Query |
allowed_default |
False |
django.db.models.expressions.BaseExpression |
annotation_select_mask |
None |
django.db.models.sql.query.Query |
base_table_class |
<class 'django.db.models.sql.datastructures.BaseTable'> |
django.db.models.sql.query.Query |
combinator |
None |
django.db.models.sql.query.Query |
combinator_all |
False |
django.db.models.sql.query.Query |
combined_queries |
() |
django.db.models.sql.query.Query |
compiler |
SQLCompiler |
django.db.models.sql.query.Query |
default_cols |
True |
django.db.models.sql.query.Query |
default_ordering |
True |
django.db.models.sql.query.Query |
deferred_loading |
(frozenset(), True) |
django.db.models.sql.query.Query |
distinct |
False |
django.db.models.sql.query.Query |
distinct_fields |
() |
django.db.models.sql.query.Query |
empty_result_set_value |
None |
django.db.models.sql.query.Query |
empty_result_set_value |
NotImplemented |
django.db.models.expressions.BaseExpression |
explain_info |
None |
django.db.models.sql.query.Query |
extra_order_by |
() |
django.db.models.sql.query.Query |
extra_select_mask |
None |
django.db.models.sql.query.Query |
extra_tables |
() |
django.db.models.sql.query.Query |
filter_is_sticky |
False |
django.db.models.sql.query.Query |
filterable |
True |
django.db.models.expressions.BaseExpression |
group_by |
None |
django.db.models.sql.query.Query |
has_select_fields |
False |
django.db.models.sql.query.Query |
high_mark |
None |
django.db.models.sql.query.Query |
is_summary |
False |
django.db.models.expressions.BaseExpression |
join_class |
<class 'django.db.models.sql.datastructures.Join'> |
django.db.models.sql.query.Query |
low_mark |
0 |
django.db.models.sql.query.Query |
max_depth |
5 |
django.db.models.sql.query.Query |
order_by |
() |
django.db.models.sql.query.Query |
select |
() |
django.db.models.sql.query.Query |
select_for_no_key_update |
False |
django.db.models.sql.query.Query |
select_for_update |
False |
django.db.models.sql.query.Query |
select_for_update_nowait |
False |
django.db.models.sql.query.Query |
select_for_update_of |
() |
django.db.models.sql.query.Query |
select_for_update_skip_locked |
False |
django.db.models.sql.query.Query |
select_related |
False |
django.db.models.sql.query.Query |
standard_ordering |
True |
django.db.models.sql.query.Query |
subq_aliases |
frozenset({'T'}) |
django.db.models.sql.query.Query |
subquery |
False |
django.db.models.sql.query.Query |
values_select |
() |
django.db.models.sql.query.Query |
window_compatible |
False |
django.db.models.expressions.BaseExpression |
def add_annotation(self, annotation, alias, select=True)
django.db.models.sql.query.Query
Add a single annotation expression to the Query.
def add_annotation(self, annotation, alias, select=True):
"""Add a single annotation expression to the Query."""
self.check_alias(alias)
annotation = annotation.resolve_expression(self, allow_joins=True, reuse=None)
if select:
self.append_annotation_mask([alias])
else:
annotation_mask = (
value
for value in dict.fromkeys(self.annotation_select)
if value != alias
)
self.set_annotation_mask(annotation_mask)
self.annotations[alias] = annotation
def add_deferred_loading(self, field_names)
django.db.models.sql.query.Query
Add the given list of model field names to the set of fields to exclude from loading from the database when automatic column selection is done. Add the new field names to any existing field names that are deferred (or removed from any existing field names that are marked as the only ones for immediate loading).
def add_deferred_loading(self, field_names):
"""
Add the given list of model field names to the set of fields to
exclude from loading from the database when automatic column selection
is done. Add the new field names to any existing field names that
are deferred (or removed from any existing field names that are marked
as the only ones for immediate loading).
"""
# Fields on related models are stored in the literal double-underscore
# format, so that we can use a set datastructure. We do the foo__bar
# splitting and handling when computing the SQL column names (as part of
# get_columns()).
existing, defer = self.deferred_loading
if defer:
# Add to existing deferred names.
self.deferred_loading = existing.union(field_names), True
else:
# Remove names from the set of any existing "immediate load" names.
if new_existing := existing.difference(field_names):
self.deferred_loading = new_existing, False
else:
self.clear_deferred_loading()
if new_only := set(field_names).difference(existing):
self.deferred_loading = new_only, True
def add_distinct_fields(self, *field_names)
django.db.models.sql.query.Query
Add and resolve the given fields to the query's "distinct on" clause.
def add_distinct_fields(self, *field_names):
"""
Add and resolve the given fields to the query's "distinct on" clause.
"""
self.distinct_fields = field_names
self.distinct = True
def add_extra(self, select, select_params, where, params, tables, order_by)
django.db.models.sql.query.Query
Add data to the various extra_* attributes for user-created additions to the query.
def add_extra(self, select, select_params, where, params, tables, order_by):
"""
Add data to the various extra_* attributes for user-created additions
to the query.
"""
if select:
# We need to pair any placeholder markers in the 'select'
# dictionary with their parameters in 'select_params' so that
# subsequent updates to the select dictionary also adjust the
# parameters appropriately.
select_pairs = {}
if select_params:
param_iter = iter(select_params)
else:
param_iter = iter([])
for name, entry in select.items():
self.check_alias(name)
entry = str(entry)
entry_params = []
pos = entry.find("%s")
while pos != -1:
if pos == 0 or entry[pos - 1] != "%":
entry_params.append(next(param_iter))
pos = entry.find("%s", pos + 2)
select_pairs[name] = (entry, entry_params)
self.extra.update(select_pairs)
if where or params:
self.where.add(ExtraWhere(where, params), AND)
if tables:
self.extra_tables += tuple(tables)
if order_by:
self.extra_order_by = order_by
def add_fields(self, field_names, allow_m2m=True)
django.db.models.sql.query.Query
Add the given (model) fields to the select set. Add the field names in the order specified.
def add_fields(self, field_names, allow_m2m=True):
"""
Add the given (model) fields to the select set. Add the field names in
the order specified.
"""
alias = self.get_initial_alias()
opts = self.get_meta()
try:
cols = []
for name in field_names:
# Join promotion note - we must not remove any rows here, so
# if there is no existing joins, use outer join.
join_info = self.setup_joins(
name.split(LOOKUP_SEP), opts, alias, allow_many=allow_m2m
)
targets, final_alias, joins = self.trim_joins(
join_info.targets,
join_info.joins,
join_info.path,
)
for target in targets:
cols.append(join_info.transform_function(target, final_alias))
if cols:
self.set_select(cols)
except MultiJoin:
raise FieldError("Invalid field name: '%s'" % name)
except FieldError:
if LOOKUP_SEP in name:
# For lookups spanning over relationships, show the error
# from the model on which the lookup failed.
raise
else:
names = sorted(
[
*get_field_names_from_opts(opts),
*self.extra,
*self.annotation_select,
*self._filtered_relations,
]
)
raise FieldError(
"Cannot resolve keyword %r into field. "
"Choices are: %s" % (name, ", ".join(names))
)
def add_filter(self, filter_lhs, filter_rhs)
django.db.models.sql.query.Query
def add_filter(self, filter_lhs, filter_rhs):
self.add_q(Q((filter_lhs, filter_rhs)))
def add_filtered_relation(self, filtered_relation, alias)
django.db.models.sql.query.Query
def add_filtered_relation(self, filtered_relation, alias):
filtered_relation.alias = alias
relation_lookup_parts, relation_field_parts, _ = self.solve_lookup_type(
filtered_relation.relation_name
)
if relation_lookup_parts:
raise ValueError(
"FilteredRelation's relation_name cannot contain lookups "
"(got %r)." % filtered_relation.relation_name
)
for lookup in get_children_from_q(filtered_relation.condition):
lookup_parts, lookup_field_parts, _ = self.solve_lookup_type(lookup)
shift = 2 if not lookup_parts else 1
lookup_field_path = lookup_field_parts[:-shift]
for idx, lookup_field_part in enumerate(lookup_field_path):
if len(relation_field_parts) > idx:
if relation_field_parts[idx] != lookup_field_part:
raise ValueError(
"FilteredRelation's condition doesn't support "
"relations outside the %r (got %r)."
% (filtered_relation.relation_name, lookup)
)
else:
raise ValueError(
"FilteredRelation's condition doesn't support nested "
"relations deeper than the relation_name (got %r for "
"%r)." % (lookup, filtered_relation.relation_name)
)
filtered_relation.condition = rename_prefix_from_q(
filtered_relation.relation_name,
alias,
filtered_relation.condition,
)
self._filtered_relations[filtered_relation.alias] = filtered_relation
def add_immediate_loading(self, field_names)
django.db.models.sql.query.Query
Add the given list of model field names to the set of fields to retrieve when the SQL is executed ("immediate loading" fields). The field names replace any existing immediate loading field names. If there are field names already specified for deferred loading, remove those names from the new field_names before storing the new names for immediate loading. (That is, immediate loading overrides any existing immediate values, but respects existing deferrals.)
def add_immediate_loading(self, field_names):
"""
Add the given list of model field names to the set of fields to
retrieve when the SQL is executed ("immediate loading" fields). The
field names replace any existing immediate loading field names. If
there are field names already specified for deferred loading, remove
those names from the new field_names before storing the new names
for immediate loading. (That is, immediate loading overrides any
existing immediate values, but respects existing deferrals.)
"""
existing, defer = self.deferred_loading
field_names = set(field_names)
if "pk" in field_names:
field_names.remove("pk")
field_names.add(self.get_meta().pk.name)
if defer:
# Remove any existing deferred names from the current set before
# setting the new names.
self.deferred_loading = field_names.difference(existing), False
else:
# Replace any existing "immediate load" field names.
self.deferred_loading = frozenset(field_names), False
def add_ordering(self, *ordering)
django.db.models.sql.query.Query
Add items from the 'ordering' sequence to the query's "order by" clause. These items are either field names (not column names) -- possibly with a direction prefix ('-' or '?') -- or OrderBy expressions. If 'ordering' is empty, clear all ordering from the query.
def add_ordering(self, *ordering):
"""
Add items from the 'ordering' sequence to the query's "order by"
clause. These items are either field names (not column names) --
possibly with a direction prefix ('-' or '?') -- or OrderBy
expressions.
If 'ordering' is empty, clear all ordering from the query.
"""
errors = []
for item in ordering:
if isinstance(item, str):
if item == "?":
continue
item = item.removeprefix("-")
if item in self.annotations:
continue
if self.extra and item in self.extra:
continue
# names_to_path() validates the lookup. A descriptive
# FieldError will be raise if it's not.
self.names_to_path(item.split(LOOKUP_SEP), self.model._meta)
elif not hasattr(item, "resolve_expression"):
errors.append(item)
if getattr(item, "contains_aggregate", False):
raise FieldError(
"Using an aggregate in order_by() without also including "
"it in annotate() is not allowed: %s" % item
)
if errors:
raise FieldError("Invalid order_by arguments: %s" % errors)
if ordering:
self.order_by += ordering
else:
self.default_ordering = False
def add_q(self, q_object)
django.db.models.sql.query.Query
A preprocessor for the internal _add_q(). Responsible for doing final join promotion.
def add_q(self, q_object):
"""
A preprocessor for the internal _add_q(). Responsible for doing final
join promotion.
"""
# For join promotion this case is doing an AND for the added q_object
# and existing conditions. So, any existing inner join forces the join
# type to remain inner. Existing outer joins can however be demoted.
# (Consider case where rel_a is LOUTER and rel_a__col=1 is added - if
# rel_a doesn't produce any rows, then the whole condition must fail.
# So, demotion is OK.
existing_inner = {
a for a in self.alias_map if self.alias_map[a].join_type == INNER
}
clause, _ = self._add_q(q_object, self.used_aliases)
if clause:
self.where.add(clause, AND)
self.demote_joins(existing_inner)
def add_select_col(self, col, name)
django.db.models.sql.query.Query
def add_select_col(self, col, name):
self.select += (col,)
self.values_select += (name,)
def add_select_related(self, fields)
django.db.models.sql.query.Query
Set up the select_related data structure so that we only select certain related models (as opposed to all models, when self.select_related=True).
def add_select_related(self, fields):
"""
Set up the select_related data structure so that we only select
certain related models (as opposed to all models, when
self.select_related=True).
"""
if isinstance(self.select_related, bool):
field_dict = {}
else:
field_dict = self.select_related
for field in fields:
d = field_dict
for part in field.split(LOOKUP_SEP):
d = d.setdefault(part, {})
self.select_related = field_dict
def annotation_select(self)
django.db.models.sql.query.Query
Return the dictionary of aggregate columns that are not masked and should be used in the SELECT clause. Cache this result for performance.
def append_annotation_mask(self, names)
django.db.models.sql.query.Query
def append_annotation_mask(self, names):
if self.annotation_select_mask is not None:
self.set_annotation_mask((*self.annotation_select_mask, *names))
def as_sql(self, compiler, connection)
django.db.models.sql.query.Query
django.db.models.sql.query.Query
Responsible for returning a (sql, [params]) tuple to be included in the current query. Different backends can provide their own implementation, by providing an `as_{vendor}` method and patching the Expression: ``` def override_as_sql(self, compiler, connection): # custom logic return super().as_sql(compiler, connection) setattr(Expression, 'as_' + connection.vendor, override_as_sql) ``` Arguments: * compiler: the query compiler responsible for generating the query. Must have a compile method, returning a (sql, [params]) tuple. Calling compiler(value) will return a quoted `value`. * connection: the database connection used for the current query. Return: (sql, params) Where `sql` is a string containing ordered sql parameters to be replaced with the elements of the list `params`.
def as_sql(self, compiler, connection):
# Some backends (e.g. Oracle) raise an error when a subquery contains
# unnecessary ORDER BY clause.
if (
self.subquery
and not connection.features.ignores_unnecessary_order_by_in_subqueries
):
self.clear_ordering(force=False)
for query in self.combined_queries:
query.clear_ordering(force=False)
sql, params = self.get_compiler(connection=connection).as_sql()
if self.subquery:
sql = "(%s)" % sql
return sql, params
django.db.models.expressions.BaseExpression
Responsible for returning a (sql, [params]) tuple to be included in the current query. Different backends can provide their own implementation, by providing an `as_{vendor}` method and patching the Expression: ``` def override_as_sql(self, compiler, connection): # custom logic return super().as_sql(compiler, connection) setattr(Expression, 'as_' + connection.vendor, override_as_sql) ``` Arguments: * compiler: the query compiler responsible for generating the query. Must have a compile method, returning a (sql, [params]) tuple. Calling compiler(value) will return a quoted `value`. * connection: the database connection used for the current query. Return: (sql, params) Where `sql` is a string containing ordered sql parameters to be replaced with the elements of the list `params`.
def as_sql(self, compiler, connection):
"""
Responsible for returning a (sql, [params]) tuple to be included
in the current query.
Different backends can provide their own implementation, by
providing an `as_{vendor}` method and patching the Expression:
```
def override_as_sql(self, compiler, connection):
# custom logic
return super().as_sql(compiler, connection)
setattr(Expression, 'as_' + connection.vendor, override_as_sql)
```
Arguments:
* compiler: the query compiler responsible for generating the query.
Must have a compile method, returning a (sql, [params]) tuple.
Calling compiler(value) will return a quoted `value`.
* connection: the database connection used for the current query.
Return: (sql, params)
Where `sql` is a string containing ordered sql parameters to be
replaced with the elements of the list `params`.
"""
raise NotImplementedError("Subclasses must implement as_sql()")
def asc(self, **kwargs)
django.db.models.expressions.BaseExpression
def asc(self, **kwargs):
return OrderBy(self, **kwargs)
def base_table(self)
django.db.models.sql.query.Query
def build_filter(self, filter_expr, branch_negated=False, current_negated=False, can_reuse=None, allow_joins=True, split_subq=True, check_filterable=True, summarize=False, update_join_types=True)
django.db.models.sql.query.Query
Build a WhereNode for a single filter clause but don't add it to this Query. Query.add_q() will then add this filter to the where Node. The 'branch_negated' tells us if the current branch contains any negations. This will be used to determine if subqueries are needed. The 'current_negated' is used to determine if the current filter is negated or not and this will be used to determine if IS NULL filtering is needed. The difference between current_negated and branch_negated is that branch_negated is set on first negation, but current_negated is flipped for each negation. Note that add_filter will not do any negating itself, that is done upper in the code by add_q(). The 'can_reuse' is a set of reusable joins for multijoins. The method will create a filter clause that can be added to the current query. However, if the filter isn't added to the query then the caller is responsible for unreffing the joins used.
def build_filter(
self,
filter_expr,
branch_negated=False,
current_negated=False,
can_reuse=None,
allow_joins=True,
split_subq=True,
check_filterable=True,
summarize=False,
update_join_types=True,
):
"""
Build a WhereNode for a single filter clause but don't add it
to this Query. Query.add_q() will then add this filter to the where
Node.
The 'branch_negated' tells us if the current branch contains any
negations. This will be used to determine if subqueries are needed.
The 'current_negated' is used to determine if the current filter is
negated or not and this will be used to determine if IS NULL filtering
is needed.
The difference between current_negated and branch_negated is that
branch_negated is set on first negation, but current_negated is
flipped for each negation.
Note that add_filter will not do any negating itself, that is done
upper in the code by add_q().
The 'can_reuse' is a set of reusable joins for multijoins.
The method will create a filter clause that can be added to the current
query. However, if the filter isn't added to the query then the caller
is responsible for unreffing the joins used.
"""
if isinstance(filter_expr, dict):
raise FieldError("Cannot parse keyword query as dict")
if isinstance(filter_expr, Q):
return self._add_q(
filter_expr,
branch_negated=branch_negated,
current_negated=current_negated,
used_aliases=can_reuse,
allow_joins=allow_joins,
split_subq=split_subq,
check_filterable=check_filterable,
summarize=summarize,
update_join_types=update_join_types,
)
if hasattr(filter_expr, "resolve_expression"):
if not getattr(filter_expr, "conditional", False):
raise TypeError("Cannot filter against a non-conditional expression.")
condition = filter_expr.resolve_expression(
self, allow_joins=allow_joins, reuse=can_reuse, summarize=summarize
)
if not isinstance(condition, Lookup):
condition = self.build_lookup(["exact"], condition, True)
return WhereNode([condition], connector=AND), []
arg, value = filter_expr
if not arg:
raise FieldError("Cannot parse keyword query %r" % arg)
lookups, parts, reffed_expression = self.solve_lookup_type(arg, summarize)
if check_filterable:
self.check_filterable(reffed_expression)
if not allow_joins and len(parts) > 1:
raise FieldError("Joined field references are not permitted in this query")
pre_joins = self.alias_refcount.copy()
value = self.resolve_lookup_value(value, can_reuse, allow_joins, summarize)
used_joins = {
k for k, v in self.alias_refcount.items() if v > pre_joins.get(k, 0)
}
if check_filterable:
self.check_filterable(value)
if reffed_expression:
condition = self.build_lookup(lookups, reffed_expression, value)
return WhereNode([condition], connector=AND), []
opts = self.get_meta()
alias = self.get_initial_alias()
allow_many = not branch_negated or not split_subq
try:
join_info = self.setup_joins(
parts,
opts,
alias,
can_reuse=can_reuse,
allow_many=allow_many,
)
# Prevent iterator from being consumed by check_related_objects()
if isinstance(value, Iterator):
value = list(value)
self.check_related_objects(join_info.final_field, value, join_info.opts)
# split_exclude() needs to know which joins were generated for the
# lookup parts
self._lookup_joins = join_info.joins
except MultiJoin as e:
return self.split_exclude(filter_expr, can_reuse, e.names_with_path)
# Update used_joins before trimming since they are reused to determine
# which joins could be later promoted to INNER.
used_joins.update(join_info.joins)
targets, alias, join_list = self.trim_joins(
join_info.targets, join_info.joins, join_info.path
)
if can_reuse is not None:
can_reuse.update(join_list)
if join_info.final_field.is_relation:
if len(targets) == 1:
col = self._get_col(targets[0], join_info.final_field, alias)
else:
col = MultiColSource(
alias, targets, join_info.targets, join_info.final_field
)
else:
col = self._get_col(targets[0], join_info.final_field, alias)
condition = self.build_lookup(lookups, col, value)
lookup_type = condition.lookup_name
clause = WhereNode([condition], connector=AND)
require_outer = (
lookup_type == "isnull" and condition.rhs is True and not current_negated
)
if (
current_negated
and (lookup_type != "isnull" or condition.rhs is False)
and condition.rhs is not None
):
require_outer = True
if lookup_type != "isnull":
# The condition added here will be SQL like this:
# NOT (col IS NOT NULL), where the first NOT is added in
# upper layers of code. The reason for addition is that if col
# is null, then col != someval will result in SQL "unknown"
# which isn't the same as in Python. The Python None handling
# is wanted, and it can be gotten by
# (col IS NULL OR col != someval)
# <=>
# NOT (col IS NOT NULL AND col = someval).
if (
self.is_nullable(targets[0])
or self.alias_map[join_list[-1]].join_type == LOUTER
):
lookup_class = targets[0].get_lookup("isnull")
col = self._get_col(targets[0], join_info.targets[0], alias)
clause.add(lookup_class(col, False), AND)
# If someval is a nullable column, someval IS NOT NULL is
# added.
if isinstance(value, Col) and self.is_nullable(value.target):
lookup_class = value.target.get_lookup("isnull")
clause.add(lookup_class(value, False), AND)
return clause, used_joins if not require_outer else ()
def build_lookup(self, lookups, lhs, rhs)
django.db.models.sql.query.Query
Try to extract transforms and lookup from given lhs. The lhs value is something that works like SQLExpression. The rhs value is what the lookup is going to compare against. The lookups is a list of names to extract using get_lookup() and get_transform().
def build_lookup(self, lookups, lhs, rhs):
"""
Try to extract transforms and lookup from given lhs.
The lhs value is something that works like SQLExpression.
The rhs value is what the lookup is going to compare against.
The lookups is a list of names to extract using get_lookup()
and get_transform().
"""
# __exact is the default lookup if one isn't given.
*transforms, lookup_name = lookups or ["exact"]
for name in transforms:
lhs = self.try_transform(lhs, name)
# First try get_lookup() so that the lookup takes precedence if the lhs
# supports both transform and lookup for the name.
lookup_class = lhs.get_lookup(lookup_name)
if not lookup_class:
# A lookup wasn't found. Try to interpret the name as a transform
# and do an Exact lookup against it.
lhs = self.try_transform(lhs, lookup_name)
lookup_name = "exact"
lookup_class = lhs.get_lookup(lookup_name)
if not lookup_class:
return
lookup = lookup_class(lhs, rhs)
# Interpret '__exact=None' as the sql 'is NULL'; otherwise, reject all
# uses of None as a query value unless the lookup supports it.
if lookup.rhs is None and not lookup.can_use_none_as_rhs:
if lookup_name not in ("exact", "iexact"):
raise ValueError("Cannot use None as a query value")
return lhs.get_lookup("isnull")(lhs, True)
# For Oracle '' is equivalent to null. The check must be done at this
# stage because join promotion can't be done in the compiler. Using
# DEFAULT_DB_ALIAS isn't nice but it's the best that can be done here.
# A similar thing is done in is_nullable(), too.
if (
lookup_name == "exact"
and lookup.rhs == ""
and connections[DEFAULT_DB_ALIAS].features.interprets_empty_strings_as_nulls
):
return lhs.get_lookup("isnull")(lhs, True)
return lookup
def build_where(self, filter_expr)
django.db.models.sql.query.Query
def build_where(self, filter_expr):
return self.build_filter(filter_expr, allow_joins=False)[0]
def bump_prefix(self, other_query, exclude=None)
django.db.models.sql.query.Query
Change the alias prefix to the next letter in the alphabet in a way that the other query's aliases and this query's aliases will not conflict. Even tables that previously had no alias will get an alias after this call. To prevent changing aliases use the exclude parameter.
def bump_prefix(self, other_query, exclude=None):
"""
Change the alias prefix to the next letter in the alphabet in a way
that the other query's aliases and this query's aliases will not
conflict. Even tables that previously had no alias will get an alias
after this call. To prevent changing aliases use the exclude parameter.
"""
def prefix_gen():
"""
Generate a sequence of characters in alphabetical order:
-> 'A', 'B', 'C', ...
When the alphabet is finished, the sequence will continue with the
Cartesian product:
-> 'AA', 'AB', 'AC', ...
"""
alphabet = ascii_uppercase
prefix = chr(ord(self.alias_prefix) + 1)
yield prefix
for n in count(1):
seq = alphabet[alphabet.index(prefix) :] if prefix else alphabet
for s in product(seq, repeat=n):
yield "".join(s)
prefix = None
if self.alias_prefix != other_query.alias_prefix:
# No clashes between self and outer query should be possible.
return
# Explicitly avoid infinite loop. The constant divider is based on how
# much depth recursive subquery references add to the stack. This value
# might need to be adjusted when adding or removing function calls from
# the code path in charge of performing these operations.
local_recursion_limit = sys.getrecursionlimit() // 16
for pos, prefix in enumerate(prefix_gen()):
if prefix not in self.subq_aliases:
self.alias_prefix = prefix
break
if pos > local_recursion_limit:
raise RecursionError(
"Maximum recursion depth exceeded: too many subqueries."
)
self.subq_aliases = self.subq_aliases.union([self.alias_prefix])
other_query.subq_aliases = other_query.subq_aliases.union(self.subq_aliases)
if exclude is None:
exclude = {}
self.change_aliases(
{
alias: "%s%d" % (self.alias_prefix, pos)
for pos, alias in enumerate(self.alias_map)
if alias not in exclude
}
)
def can_filter(self)
django.db.models.sql.query.Query
Return True if adding filters to this instance is still possible. Typically, this means no limits or offsets have been put on the results.
def can_filter(self):
"""
Return True if adding filters to this instance is still possible.
Typically, this means no limits or offsets have been put on the results.
"""
return not self.is_sliced
def chain(self, klass=None)
django.db.models.sql.query.Query
Return a copy of the current Query that's ready for another operation. The klass argument changes the type of the Query, e.g. UpdateQuery.
def chain(self, klass=None):
"""
Return a copy of the current Query that's ready for another operation.
The klass argument changes the type of the Query, e.g. UpdateQuery.
"""
obj = self.clone()
if klass and obj.__class__ != klass:
obj.__class__ = klass
if not obj.filter_is_sticky:
obj.used_aliases = set()
obj.filter_is_sticky = False
if hasattr(obj, "_setup_query"):
obj._setup_query()
return obj
def change_aliases(self, change_map)
django.db.models.sql.query.Query
Change the aliases in change_map (which maps old-alias -> new-alias), relabelling any references to them in select columns and the where clause.
def change_aliases(self, change_map):
"""
Change the aliases in change_map (which maps old-alias -> new-alias),
relabelling any references to them in select columns and the where
clause.
"""
# If keys and values of change_map were to intersect, an alias might be
# updated twice (e.g. T4 -> T5, T5 -> T6, so also T4 -> T6) depending
# on their order in change_map.
assert set(change_map).isdisjoint(change_map.values())
# 1. Update references in "select" (normal columns plus aliases),
# "group by" and "where".
self.where.relabel_aliases(change_map)
if isinstance(self.group_by, tuple):
self.group_by = tuple(
[col.relabeled_clone(change_map) for col in self.group_by]
)
self.select = tuple([col.relabeled_clone(change_map) for col in self.select])
self.annotations = self.annotations and {
key: col.relabeled_clone(change_map)
for key, col in self.annotations.items()
}
# 2. Rename the alias in the internal table/alias datastructures.
for old_alias, new_alias in change_map.items():
if old_alias not in self.alias_map:
continue
alias_data = self.alias_map[old_alias].relabeled_clone(change_map)
self.alias_map[new_alias] = alias_data
self.alias_refcount[new_alias] = self.alias_refcount[old_alias]
del self.alias_refcount[old_alias]
del self.alias_map[old_alias]
table_aliases = self.table_map[alias_data.table_name]
for pos, alias in enumerate(table_aliases):
if alias == old_alias:
table_aliases[pos] = new_alias
break
self.external_aliases = {
# Table is aliased or it's being changed and thus is aliased.
change_map.get(alias, alias): (aliased or alias in change_map)
for alias, aliased in self.external_aliases.items()
}
def check_alias(self, alias)
django.db.models.sql.query.Query
def check_alias(self, alias):
if FORBIDDEN_ALIAS_PATTERN.search(alias):
raise ValueError(
"Column aliases cannot contain whitespace characters, quotation marks, "
"semicolons, or SQL comments."
)
def check_filterable(self, expression)
django.db.models.sql.query.Query
Raise an error if expression cannot be used in a WHERE clause.
def check_filterable(self, expression):
"""Raise an error if expression cannot be used in a WHERE clause."""
if hasattr(expression, "resolve_expression") and not getattr(
expression, "filterable", True
):
raise NotSupportedError(
expression.__class__.__name__ + " is disallowed in the filter "
"clause."
)
if hasattr(expression, "get_source_expressions"):
for expr in expression.get_source_expressions():
self.check_filterable(expr)
def check_query_object_type(self, value, opts, field)
django.db.models.sql.query.Query
Check whether the object passed while querying is of the correct type. If not, raise a ValueError specifying the wrong object.
def check_query_object_type(self, value, opts, field):
"""
Check whether the object passed while querying is of the correct type.
If not, raise a ValueError specifying the wrong object.
"""
if hasattr(value, "_meta"):
if not check_rel_lookup_compatibility(value._meta.model, opts, field):
raise ValueError(
'Cannot query "%s": Must be "%s" instance.'
% (value, opts.object_name)
)
def check_related_objects(self, field, value, opts)
django.db.models.sql.query.Query
Check the type of object passed to query relations.
def check_related_objects(self, field, value, opts):
"""Check the type of object passed to query relations."""
if field.is_relation:
# Check that the field and the queryset use the same model in a
# query like .filter(author=Author.objects.all()). For example, the
# opts would be Author's (from the author field) and value.model
# would be Author.objects.all() queryset's .model (Author also).
# The field is the related field on the lhs side.
if (
isinstance(value, Query)
and not value.has_select_fields
and not check_rel_lookup_compatibility(value.model, opts, field)
):
raise ValueError(
'Cannot use QuerySet for "%s": Use a QuerySet for "%s".'
% (value.model._meta.object_name, opts.object_name)
)
elif hasattr(value, "_meta"):
self.check_query_object_type(value, opts, field)
elif hasattr(value, "__iter__"):
for v in value:
self.check_query_object_type(v, opts, field)
def clear_deferred_loading(self)
django.db.models.sql.query.Query
Remove any fields from the deferred loading set.
def clear_deferred_loading(self):
"""Remove any fields from the deferred loading set."""
self.deferred_loading = (frozenset(), True)
def clear_limits(self)
django.db.models.sql.query.Query
Clear any existing limits.
def clear_limits(self):
"""Clear any existing limits."""
self.low_mark, self.high_mark = 0, None
def clear_ordering(self, force=False, clear_default=True)
django.db.models.sql.query.Query
Remove any ordering settings if the current query allows it without side effects, set 'force' to True to clear the ordering regardless. If 'clear_default' is True, there will be no ordering in the resulting query (not even the model's default).
def clear_ordering(self, force=False, clear_default=True):
"""
Remove any ordering settings if the current query allows it without
side effects, set 'force' to True to clear the ordering regardless.
If 'clear_default' is True, there will be no ordering in the resulting
query (not even the model's default).
"""
if not force and (
self.is_sliced or self.distinct_fields or self.select_for_update
):
return
self.order_by = ()
self.extra_order_by = ()
if clear_default:
self.default_ordering = False
def clear_select_clause(self)
django.db.models.sql.query.Query
Remove all fields from SELECT clause.
def clear_select_clause(self):
"""Remove all fields from SELECT clause."""
self.select = ()
self.default_cols = False
self.select_related = False
self.set_extra_mask(())
self.set_annotation_mask(())
def clear_select_fields(self)
django.db.models.sql.query.Query
Clear the list of fields to select (but not extra_select columns). Some queryset types completely replace any existing list of select columns.
def clear_select_fields(self):
"""
Clear the list of fields to select (but not extra_select columns).
Some queryset types completely replace any existing list of select
columns.
"""
self.select = ()
self.values_select = ()
def clear_where(self)
django.db.models.sql.query.Query
def clear_where(self):
self.where = WhereNode()
def clone(self)
django.db.models.sql.query.Query
Return a copy of the current Query. A lightweight alternative to deepcopy().
def clone(self):
"""
Return a copy of the current Query. A lightweight alternative to
deepcopy().
"""
obj = Empty()
obj.__class__ = self.__class__
# Copy references to everything.
obj.__dict__ = self.__dict__.copy()
# Clone attributes that can't use shallow copy.
obj.alias_refcount = self.alias_refcount.copy()
obj.alias_map = self.alias_map.copy()
obj.external_aliases = self.external_aliases.copy()
obj.table_map = self.table_map.copy()
obj.where = self.where.clone()
obj.annotations = self.annotations.copy()
if self.annotation_select_mask is not None:
obj.annotation_select_mask = self.annotation_select_mask.copy()
if self.combined_queries:
obj.combined_queries = tuple(
[query.clone() for query in self.combined_queries]
)
# _annotation_select_cache cannot be copied, as doing so breaks the
# (necessary) state in which both annotations and
# _annotation_select_cache point to the same underlying objects.
# It will get re-populated in the cloned queryset the next time it's
# used.
obj._annotation_select_cache = None
obj.extra = self.extra.copy()
if self.extra_select_mask is not None:
obj.extra_select_mask = self.extra_select_mask.copy()
if self._extra_select_cache is not None:
obj._extra_select_cache = self._extra_select_cache.copy()
if self.select_related is not False:
# Use deepcopy because select_related stores fields in nested
# dicts.
obj.select_related = copy.deepcopy(obj.select_related)
if "subq_aliases" in self.__dict__:
obj.subq_aliases = self.subq_aliases.copy()
obj.used_aliases = self.used_aliases.copy()
obj._filtered_relations = self._filtered_relations.copy()
# Clear the cached_property, if it exists.
obj.__dict__.pop("base_table", None)
return obj
def combine(self, rhs, connector)
django.db.models.sql.query.Query
Merge the 'rhs' query into the current one (with any 'rhs' effects being applied *after* (that is, "to the right of") anything in the current query. 'rhs' is not modified during a call to this function. The 'connector' parameter describes how to connect filters from the 'rhs' query.
def combine(self, rhs, connector):
"""
Merge the 'rhs' query into the current one (with any 'rhs' effects
being applied *after* (that is, "to the right of") anything in the
current query. 'rhs' is not modified during a call to this function.
The 'connector' parameter describes how to connect filters from the
'rhs' query.
"""
if self.model != rhs.model:
raise TypeError("Cannot combine queries on two different base models.")
if self.is_sliced:
raise TypeError("Cannot combine queries once a slice has been taken.")
if self.distinct != rhs.distinct:
raise TypeError("Cannot combine a unique query with a non-unique query.")
if self.distinct_fields != rhs.distinct_fields:
raise TypeError("Cannot combine queries with different distinct fields.")
# If lhs and rhs shares the same alias prefix, it is possible to have
# conflicting alias changes like T4 -> T5, T5 -> T6, which might end up
# as T4 -> T6 while combining two querysets. To prevent this, change an
# alias prefix of the rhs and update current aliases accordingly,
# except if the alias is the base table since it must be present in the
# query on both sides.
initial_alias = self.get_initial_alias()
rhs.bump_prefix(self, exclude={initial_alias})
# Work out how to relabel the rhs aliases, if necessary.
change_map = {}
conjunction = connector == AND
# Determine which existing joins can be reused. When combining the
# query with AND we must recreate all joins for m2m filters. When
# combining with OR we can reuse joins. The reason is that in AND
# case a single row can't fulfill a condition like:
# revrel__col=1 & revrel__col=2
# But, there might be two different related rows matching this
# condition. In OR case a single True is enough, so single row is
# enough, too.
#
# Note that we will be creating duplicate joins for non-m2m joins in
# the AND case. The results will be correct but this creates too many
# joins. This is something that could be fixed later on.
reuse = set() if conjunction else set(self.alias_map)
joinpromoter = JoinPromoter(connector, 2, False)
joinpromoter.add_votes(
j for j in self.alias_map if self.alias_map[j].join_type == INNER
)
rhs_votes = set()
# Now, add the joins from rhs query into the new query (skipping base
# table).
rhs_tables = list(rhs.alias_map)[1:]
for alias in rhs_tables:
join = rhs.alias_map[alias]
# If the left side of the join was already relabeled, use the
# updated alias.
join = join.relabeled_clone(change_map)
new_alias = self.join(join, reuse=reuse)
if join.join_type == INNER:
rhs_votes.add(new_alias)
# We can't reuse the same join again in the query. If we have two
# distinct joins for the same connection in rhs query, then the
# combined query must have two joins, too.
reuse.discard(new_alias)
if alias != new_alias:
change_map[alias] = new_alias
if not rhs.alias_refcount[alias]:
# The alias was unused in the rhs query. Unref it so that it
# will be unused in the new query, too. We have to add and
# unref the alias so that join promotion has information of
# the join type for the unused alias.
self.unref_alias(new_alias)
joinpromoter.add_votes(rhs_votes)
joinpromoter.update_join_types(self)
# Combine subqueries aliases to ensure aliases relabelling properly
# handle subqueries when combining where and select clauses.
self.subq_aliases |= rhs.subq_aliases
# Now relabel a copy of the rhs where-clause and add it to the current
# one.
w = rhs.where.clone()
w.relabel_aliases(change_map)
self.where.add(w, connector)
# Selection columns and extra extensions are those provided by 'rhs'.
if rhs.select:
self.set_select([col.relabeled_clone(change_map) for col in rhs.select])
else:
self.select = ()
if connector == OR:
# It would be nice to be able to handle this, but the queries don't
# really make sense (or return consistent value sets). Not worth
# the extra complexity when you can write a real query instead.
if self.extra and rhs.extra:
raise ValueError(
"When merging querysets using 'or', you cannot have "
"extra(select=...) on both sides."
)
self.extra.update(rhs.extra)
extra_select_mask = set()
if self.extra_select_mask is not None:
extra_select_mask.update(self.extra_select_mask)
if rhs.extra_select_mask is not None:
extra_select_mask.update(rhs.extra_select_mask)
if extra_select_mask:
self.set_extra_mask(extra_select_mask)
self.extra_tables += rhs.extra_tables
# Ordering uses the 'rhs' ordering, unless it has none, in which case
# the current ordering is used.
self.order_by = rhs.order_by or self.order_by
self.extra_order_by = rhs.extra_order_by or self.extra_order_by
def conditional(self)
django.db.models.expressions.BaseExpression
def contains_aggregate(self)
django.db.models.expressions.BaseExpression
def contains_column_references(self)
django.db.models.expressions.BaseExpression
def contains_over_clause(self)
django.db.models.expressions.BaseExpression
def contains_subquery(self)
django.db.models.expressions.BaseExpression
def convert_value(self)
django.db.models.expressions.BaseExpression
Expressions provide their own converters because users have the option of manually specifying the output_field which may be a different type from the one the database returns.
def copy(self)
django.db.models.expressions.BaseExpression
def copy(self):
return copy.copy(self)
def count_active_tables(self)
django.db.models.sql.query.Query
Return the number of tables in this query with a non-zero reference count. After execution, the reference counts are zeroed, so tables added in compiler will not be seen by this method.
def count_active_tables(self):
"""
Return the number of tables in this query with a non-zero reference
count. After execution, the reference counts are zeroed, so tables
added in compiler will not be seen by this method.
"""
return len([1 for count in self.alias_refcount.values() if count])
def demote_joins(self, aliases)
django.db.models.sql.query.Query
Change join type from LOUTER to INNER for all joins in aliases. Similarly to promote_joins(), this method must ensure no join chains containing first an outer, then an inner join are generated. If we are demoting b->c join in chain a LOUTER b LOUTER c then we must demote a->b automatically, or otherwise the demotion of b->c doesn't actually change anything in the query results. .
def demote_joins(self, aliases):
"""
Change join type from LOUTER to INNER for all joins in aliases.
Similarly to promote_joins(), this method must ensure no join chains
containing first an outer, then an inner join are generated. If we
are demoting b->c join in chain a LOUTER b LOUTER c then we must
demote a->b automatically, or otherwise the demotion of b->c doesn't
actually change anything in the query results. .
"""
aliases = list(aliases)
while aliases:
alias = aliases.pop(0)
if self.alias_map[alias].join_type == LOUTER:
self.alias_map[alias] = self.alias_map[alias].demote()
parent_alias = self.alias_map[alias].parent_alias
if self.alias_map[parent_alias].join_type == INNER:
aliases.append(parent_alias)
def desc(self, **kwargs)
django.db.models.expressions.BaseExpression
def desc(self, **kwargs):
return OrderBy(self, descending=True, **kwargs)
def exists(self, limit=True)
django.db.models.sql.query.Query
def exists(self, limit=True):
q = self.clone()
if not (q.distinct and q.is_sliced):
if q.group_by is True:
q.add_fields(
(f.attname for f in self.model._meta.concrete_fields), False
)
# Disable GROUP BY aliases to avoid orphaning references to the
# SELECT clause which is about to be cleared.
q.set_group_by(allow_aliases=False)
q.clear_select_clause()
if q.combined_queries and q.combinator == "union":
q.combined_queries = tuple(
combined_query.exists(limit=False)
for combined_query in q.combined_queries
)
q.clear_ordering(force=True)
if limit:
q.set_limits(high=1)
q.add_annotation(Value(1), "a")
return q
def explain(self, using, format=None, **options)
django.db.models.sql.query.Query
def explain(self, using, format=None, **options):
q = self.clone()
for option_name in options:
if (
not EXPLAIN_OPTIONS_PATTERN.fullmatch(option_name)
or "--" in option_name
):
raise ValueError(f"Invalid option name: {option_name!r}.")
q.explain_info = ExplainInfo(format, options)
compiler = q.get_compiler(using=using)
return "\n".join(compiler.explain_query())
def extra_select(self)
django.db.models.sql.query.Query
def field(self)
django.db.models.expressions.BaseExpression
def flatten(self)
django.db.models.expressions.BaseExpression
Recursively yield this expression and all subexpressions, in depth-first order.
def flatten(self):
"""
Recursively yield this expression and all subexpressions, in
depth-first order.
"""
yield self
for expr in self.get_source_expressions():
if expr:
if hasattr(expr, "flatten"):
yield from expr.flatten()
else:
yield expr
def get_aggregation(self, using, aggregate_exprs)
django.db.models.sql.query.Query
Return the dictionary with the values of the existing aggregations.
def get_aggregation(self, using, aggregate_exprs):
"""
Return the dictionary with the values of the existing aggregations.
"""
if not aggregate_exprs:
return {}
# Store annotation mask prior to temporarily adding aggregations for
# resolving purpose to facilitate their subsequent removal.
refs_subquery = False
refs_window = False
replacements = {}
annotation_select_mask = self.annotation_select_mask
for alias, aggregate_expr in aggregate_exprs.items():
self.check_alias(alias)
aggregate = aggregate_expr.resolve_expression(
self, allow_joins=True, reuse=None, summarize=True
)
if not aggregate.contains_aggregate:
raise TypeError("%s is not an aggregate expression" % alias)
# Temporarily add aggregate to annotations to allow remaining
# members of `aggregates` to resolve against each others.
self.append_annotation_mask([alias])
refs_subquery |= any(
getattr(self.annotations[ref], "contains_subquery", False)
for ref in aggregate.get_refs()
)
refs_window |= any(
getattr(self.annotations[ref], "contains_over_clause", True)
for ref in aggregate.get_refs()
)
aggregate = aggregate.replace_expressions(replacements)
self.annotations[alias] = aggregate
replacements[Ref(alias, aggregate)] = aggregate
# Stash resolved aggregates now that they have been allowed to resolve
# against each other.
aggregates = {alias: self.annotations.pop(alias) for alias in aggregate_exprs}
self.set_annotation_mask(annotation_select_mask)
# Existing usage of aggregation can be determined by the presence of
# selected aggregates but also by filters against aliased aggregates.
_, having, qualify = self.where.split_having_qualify()
has_existing_aggregation = (
any(
getattr(annotation, "contains_aggregate", True)
for annotation in self.annotations.values()
)
or having
)
# Decide if we need to use a subquery.
#
# Existing aggregations would cause incorrect results as
# get_aggregation() must produce just one result and thus must not use
# GROUP BY.
#
# If the query has limit or distinct, or uses set operations, then
# those operations must be done in a subquery so that the query
# aggregates on the limit and/or distinct results instead of applying
# the distinct and limit after the aggregation.
if (
isinstance(self.group_by, tuple)
or self.is_sliced
or has_existing_aggregation
or refs_subquery
or refs_window
or qualify
or self.distinct
or self.combinator
):
from django.db.models.sql.subqueries import AggregateQuery
inner_query = self.clone()
inner_query.subquery = True
outer_query = AggregateQuery(self.model, inner_query)
inner_query.select_for_update = False
inner_query.select_related = False
inner_query.set_annotation_mask(self.annotation_select)
# Queries with distinct_fields need ordering and when a limit is
# applied we must take the slice from the ordered query. Otherwise
# no need for ordering.
inner_query.clear_ordering(force=False)
if not inner_query.distinct:
# If the inner query uses default select and it has some
# aggregate annotations, then we must make sure the inner
# query is grouped by the main model's primary key. However,
# clearing the select clause can alter results if distinct is
# used.
if inner_query.default_cols and has_existing_aggregation:
inner_query.group_by = (
self.model._meta.pk.get_col(inner_query.get_initial_alias()),
)
inner_query.default_cols = False
if not qualify:
# Mask existing annotations that are not referenced by
# aggregates to be pushed to the outer query unless
# filtering against window functions is involved as it
# requires complex realising.
annotation_mask = set()
if isinstance(self.group_by, tuple):
for expr in self.group_by:
annotation_mask |= expr.get_refs()
for aggregate in aggregates.values():
annotation_mask |= aggregate.get_refs()
# Avoid eliding expressions that might have an incidence on
# the implicit grouping logic.
for annotation_alias, annotation in self.annotation_select.items():
if annotation.get_group_by_cols():
annotation_mask.add(annotation_alias)
inner_query.set_annotation_mask(annotation_mask)
# Add aggregates to the outer AggregateQuery. This requires making
# sure all columns referenced by the aggregates are selected in the
# inner query. It is achieved by retrieving all column references
# by the aggregates, explicitly selecting them in the inner query,
# and making sure the aggregates are repointed to them.
col_refs = {}
for alias, aggregate in aggregates.items():
replacements = {}
for col in self._gen_cols([aggregate], resolve_refs=False):
if not (col_ref := col_refs.get(col)):
index = len(col_refs) + 1
col_alias = f"__col{index}"
col_ref = Ref(col_alias, col)
col_refs[col] = col_ref
inner_query.annotations[col_alias] = col
inner_query.append_annotation_mask([col_alias])
replacements[col] = col_ref
outer_query.annotations[alias] = aggregate.replace_expressions(
replacements
)
if (
inner_query.select == ()
and not inner_query.default_cols
and not inner_query.annotation_select_mask
):
# In case of Model.objects[0:3].count(), there would be no
# field selected in the inner query, yet we must use a subquery.
# So, make sure at least one field is selected.
inner_query.select = (
self.model._meta.pk.get_col(inner_query.get_initial_alias()),
)
else:
outer_query = self
self.select = ()
self.default_cols = False
self.extra = {}
if self.annotations:
# Inline reference to existing annotations and mask them as
# they are unnecessary given only the summarized aggregations
# are requested.
replacements = {
Ref(alias, annotation): annotation
for alias, annotation in self.annotations.items()
}
self.annotations = {
alias: aggregate.replace_expressions(replacements)
for alias, aggregate in aggregates.items()
}
else:
self.annotations = aggregates
self.set_annotation_mask(aggregates)
empty_set_result = [
expression.empty_result_set_value
for expression in outer_query.annotation_select.values()
]
elide_empty = not any(result is NotImplemented for result in empty_set_result)
outer_query.clear_ordering(force=True)
outer_query.clear_limits()
outer_query.select_for_update = False
outer_query.select_related = False
compiler = outer_query.get_compiler(using, elide_empty=elide_empty)
result = compiler.execute_sql(SINGLE)
if result is None:
result = empty_set_result
else:
converters = compiler.get_converters(outer_query.annotation_select.values())
result = next(compiler.apply_converters((result,), converters))
return dict(zip(outer_query.annotation_select, result))
def get_compiler(self, using=None, connection=None, elide_empty=True)
django.db.models.sql.query.Query
def get_compiler(self, using=None, connection=None, elide_empty=True):
if using is None and connection is None:
raise ValueError("Need either using or connection")
if using:
connection = connections[using]
return connection.ops.compiler(self.compiler)(
self, connection, using, elide_empty
)
def get_count(self, using)
django.db.models.sql.query.Query
Perform a COUNT() query using the current filter constraints.
def get_count(self, using):
"""
Perform a COUNT() query using the current filter constraints.
"""
obj = self.clone()
return obj.get_aggregation(using, {"__count": Count("*")})["__count"]
def get_db_converters(self, connection)
django.db.models.expressions.BaseExpression
def get_db_converters(self, connection):
return (
[]
if self.convert_value is self._convert_value_noop
else [self.convert_value]
) + self.output_field.get_db_converters(connection)
def get_external_cols(self)
django.db.models.sql.query.Query
def get_external_cols(self):
exprs = chain(self.annotations.values(), self.where.children)
return [
col
for col in self._gen_cols(exprs, include_external=True)
if col.alias in self.external_aliases
]
def get_group_by_cols(self, wrapper=None)
django.db.models.sql.query.Query
django.db.models.sql.query.Query
def get_group_by_cols(self, wrapper=None):
# If wrapper is referenced by an alias for an explicit GROUP BY through
# values() a reference to this expression and not the self must be
# returned to ensure external column references are not grouped against
# as well.
external_cols = self.get_external_cols()
if any(col.possibly_multivalued for col in external_cols):
return [wrapper or self]
return external_cols
django.db.models.expressions.BaseExpression
def get_group_by_cols(self):
if not self.contains_aggregate:
return [self]
cols = []
for source in self.get_source_expressions():
cols.extend(source.get_group_by_cols())
return cols
def get_initial_alias(self)
django.db.models.sql.query.Query
Return the first alias for this query, after increasing its reference count.
def get_initial_alias(self):
"""
Return the first alias for this query, after increasing its reference
count.
"""
if self.alias_map:
alias = self.base_table
self.ref_alias(alias)
elif self.model:
alias = self.join(self.base_table_class(self.get_meta().db_table, None))
else:
alias = None
return alias
def get_lookup(self, lookup)
django.db.models.expressions.BaseExpression
def get_lookup(self, lookup):
return self.output_field.get_lookup(lookup)
def get_meta(self)
django.db.models.sql.query.Query
Return the Options instance (the model._meta) from which to start processing. Normally, this is self.model._meta, but it can be changed by subclasses.
def get_meta(self):
"""
Return the Options instance (the model._meta) from which to start
processing. Normally, this is self.model._meta, but it can be changed
by subclasses.
"""
if self.model:
return self.model._meta
def get_refs(self)
django.db.models.expressions.BaseExpression
def get_refs(self):
refs = set()
for expr in self.get_source_expressions():
refs |= expr.get_refs()
return refs
def get_select_mask(self)
django.db.models.sql.query.Query
Convert the self.deferred_loading data structure to an alternate data structure, describing the field that *will* be loaded. This is used to compute the columns to select from the database and also by the QuerySet class to work out which fields are being initialized on each model. Models that have all their fields included aren't mentioned in the result, only those that have field restrictions in place.
def get_select_mask(self):
"""
Convert the self.deferred_loading data structure to an alternate data
structure, describing the field that *will* be loaded. This is used to
compute the columns to select from the database and also by the
QuerySet class to work out which fields are being initialized on each
model. Models that have all their fields included aren't mentioned in
the result, only those that have field restrictions in place.
"""
field_names, defer = self.deferred_loading
if not field_names:
return {}
mask = {}
for field_name in field_names:
part_mask = mask
for part in field_name.split(LOOKUP_SEP):
part_mask = part_mask.setdefault(part, {})
opts = self.get_meta()
if defer:
return self._get_defer_select_mask(opts, mask)
return self._get_only_select_mask(opts, mask)
def get_source_expressions(self)
django.db.models.expressions.BaseExpression
def get_source_expressions(self):
return []
def get_source_fields(self)
django.db.models.expressions.BaseExpression
Return the underlying field types used by this aggregate.
def get_source_fields(self):
"""Return the underlying field types used by this aggregate."""
return [e._output_field_or_none for e in self.get_source_expressions()]
def get_transform(self, name)
django.db.models.expressions.BaseExpression
def get_transform(self, name):
return self.output_field.get_transform(name)
def has_filters(self)
django.db.models.sql.query.Query
def has_filters(self):
return self.where
def has_limit_one(self)
django.db.models.sql.query.Query
def has_limit_one(self):
return self.high_mark is not None and (self.high_mark - self.low_mark) == 1
def has_results(self, using)
django.db.models.sql.query.Query
def has_results(self, using):
q = self.exists(using)
compiler = q.get_compiler(using=using)
return compiler.has_results()
def is_empty(self)
django.db.models.sql.query.Query
def is_empty(self):
return any(isinstance(c, NothingNode) for c in self.where.children)
def is_nullable(self, field)
django.db.models.sql.query.Query
Check if the given field should be treated as nullable. Some backends treat '' as null and Django treats such fields as nullable for those backends. In such situations field.null can be False even if we should treat the field as nullable.
def is_nullable(self, field):
"""
Check if the given field should be treated as nullable.
Some backends treat '' as null and Django treats such fields as
nullable for those backends. In such situations field.null can be
False even if we should treat the field as nullable.
"""
# We need to use DEFAULT_DB_ALIAS here, as QuerySet does not have
# (nor should it have) knowledge of which connection is going to be
# used. The proper fix would be to defer all decisions where
# is_nullable() is needed to the compiler stage, but that is not easy
# to do currently.
return field.null or (
field.empty_strings_allowed
and connections[DEFAULT_DB_ALIAS].features.interprets_empty_strings_as_nulls
)
def is_sliced(self)
django.db.models.sql.query.Query
def join(self, join, reuse=None)
django.db.models.sql.query.Query
Return an alias for the 'join', either reusing an existing alias for that join or creating a new one. 'join' is either a base_table_class or join_class. The 'reuse' parameter can be either None which means all joins are reusable, or it can be a set containing the aliases that can be reused. A join is always created as LOUTER if the lhs alias is LOUTER to make sure chains like t1 LOUTER t2 INNER t3 aren't generated. All new joins are created as LOUTER if the join is nullable.
def join(self, join, reuse=None):
"""
Return an alias for the 'join', either reusing an existing alias for
that join or creating a new one. 'join' is either a base_table_class or
join_class.
The 'reuse' parameter can be either None which means all joins are
reusable, or it can be a set containing the aliases that can be reused.
A join is always created as LOUTER if the lhs alias is LOUTER to make
sure chains like t1 LOUTER t2 INNER t3 aren't generated. All new
joins are created as LOUTER if the join is nullable.
"""
reuse_aliases = [
a
for a, j in self.alias_map.items()
if (reuse is None or a in reuse) and j == join
]
if reuse_aliases:
if join.table_alias in reuse_aliases:
reuse_alias = join.table_alias
else:
# Reuse the most recent alias of the joined table
# (a many-to-many relation may be joined multiple times).
reuse_alias = reuse_aliases[-1]
self.ref_alias(reuse_alias)
return reuse_alias
# No reuse is possible, so we need a new alias.
alias, _ = self.table_alias(
join.table_name, create=True, filtered_relation=join.filtered_relation
)
if join.join_type:
if self.alias_map[join.parent_alias].join_type == LOUTER or join.nullable:
join_type = LOUTER
else:
join_type = INNER
join.join_type = join_type
join.table_alias = alias
self.alias_map[alias] = join
if filtered_relation := join.filtered_relation:
resolve_reuse = reuse
if resolve_reuse is not None:
resolve_reuse = set(reuse) | {alias}
joins_len = len(self.alias_map)
join.filtered_relation = filtered_relation.resolve_expression(
self, reuse=resolve_reuse
)
# Some joins were during expression resolving, they must be present
# before the one we just added.
if joins_len < len(self.alias_map):
self.alias_map[alias] = self.alias_map.pop(alias)
return alias
def join_parent_model(self, opts, model, alias, seen)
django.db.models.sql.query.Query
Make sure the given 'model' is joined in the query. If 'model' isn't a parent of 'opts' or if it is None this method is a no-op. The 'alias' is the root alias for starting the join, 'seen' is a dict of model -> alias of existing joins. It must also contain a mapping of None -> some alias. This will be returned in the no-op case.
def join_parent_model(self, opts, model, alias, seen):
"""
Make sure the given 'model' is joined in the query. If 'model' isn't
a parent of 'opts' or if it is None this method is a no-op.
The 'alias' is the root alias for starting the join, 'seen' is a dict
of model -> alias of existing joins. It must also contain a mapping
of None -> some alias. This will be returned in the no-op case.
"""
if model in seen:
return seen[model]
chain = opts.get_base_chain(model)
if not chain:
return alias
curr_opts = opts
for int_model in chain:
if int_model in seen:
curr_opts = int_model._meta
alias = seen[int_model]
continue
# Proxy model have elements in base chain
# with no parents, assign the new options
# object and skip to the next base in that
# case
if not curr_opts.parents[int_model]:
curr_opts = int_model._meta
continue
link_field = curr_opts.get_ancestor_link(int_model)
join_info = self.setup_joins([link_field.name], curr_opts, alias)
curr_opts = int_model._meta
alias = seen[int_model] = join_info.joins[-1]
return alias or seen[None]
def names_to_path(self, names, opts, allow_many=True, fail_on_missing=False)
django.db.models.sql.query.Query
Walk the list of names and turns them into PathInfo tuples. A single name in 'names' can generate multiple PathInfos (m2m, for example). 'names' is the path of names to travel, 'opts' is the model Options we start the name resolving from, 'allow_many' is as for setup_joins(). If fail_on_missing is set to True, then a name that can't be resolved will generate a FieldError. Return a list of PathInfo tuples. In addition return the final field (the last used join field) and target (which is a field guaranteed to contain the same value as the final field). Finally, return those names that weren't found (which are likely transforms and the final lookup).
def names_to_path(self, names, opts, allow_many=True, fail_on_missing=False):
"""
Walk the list of names and turns them into PathInfo tuples. A single
name in 'names' can generate multiple PathInfos (m2m, for example).
'names' is the path of names to travel, 'opts' is the model Options we
start the name resolving from, 'allow_many' is as for setup_joins().
If fail_on_missing is set to True, then a name that can't be resolved
will generate a FieldError.
Return a list of PathInfo tuples. In addition return the final field
(the last used join field) and target (which is a field guaranteed to
contain the same value as the final field). Finally, return those names
that weren't found (which are likely transforms and the final lookup).
"""
path, names_with_path = [], []
for pos, name in enumerate(names):
cur_names_with_path = (name, [])
if name == "pk" and opts is not None:
name = opts.pk.name
field = None
filtered_relation = None
try:
if opts is None:
raise FieldDoesNotExist
field = opts.get_field(name)
except FieldDoesNotExist:
if name in self.annotation_select:
field = self.annotation_select[name].output_field
elif name in self._filtered_relations and pos == 0:
filtered_relation = self._filtered_relations[name]
if LOOKUP_SEP in filtered_relation.relation_name:
parts = filtered_relation.relation_name.split(LOOKUP_SEP)
filtered_relation_path, field, _, _ = self.names_to_path(
parts,
opts,
allow_many,
fail_on_missing,
)
path.extend(filtered_relation_path[:-1])
else:
field = opts.get_field(filtered_relation.relation_name)
if field is not None:
# Fields that contain one-to-many relations with a generic
# model (like a GenericForeignKey) cannot generate reverse
# relations and therefore cannot be used for reverse querying.
if field.is_relation and not field.related_model:
raise FieldError(
"Field %r does not generate an automatic reverse "
"relation and therefore cannot be used for reverse "
"querying. If it is a GenericForeignKey, consider "
"adding a GenericRelation." % name
)
try:
model = field.model._meta.concrete_model
except AttributeError:
# QuerySet.annotate() may introduce fields that aren't
# attached to a model.
model = None
else:
# We didn't find the current field, so move position back
# one step.
pos -= 1
if pos == -1 or fail_on_missing:
available = sorted(
[
*get_field_names_from_opts(opts),
*self.annotation_select,
*self._filtered_relations,
]
)
raise FieldError(
"Cannot resolve keyword '%s' into field. "
"Choices are: %s" % (name, ", ".join(available))
)
break
# Check if we need any joins for concrete inheritance cases (the
# field lives in parent, but we are currently in one of its
# children)
if opts is not None and model is not opts.model:
path_to_parent = opts.get_path_to_parent(model)
if path_to_parent:
path.extend(path_to_parent)
cur_names_with_path[1].extend(path_to_parent)
opts = path_to_parent[-1].to_opts
if hasattr(field, "path_infos"):
if filtered_relation:
pathinfos = field.get_path_info(filtered_relation)
else:
pathinfos = field.path_infos
if not allow_many:
for inner_pos, p in enumerate(pathinfos):
if p.m2m:
cur_names_with_path[1].extend(pathinfos[0 : inner_pos + 1])
names_with_path.append(cur_names_with_path)
raise MultiJoin(pos + 1, names_with_path)
last = pathinfos[-1]
path.extend(pathinfos)
final_field = last.join_field
opts = last.to_opts
targets = last.target_fields
cur_names_with_path[1].extend(pathinfos)
names_with_path.append(cur_names_with_path)
else:
# Local non-relational field.
final_field = field
targets = (field,)
if fail_on_missing and pos + 1 != len(names):
raise FieldError(
"Cannot resolve keyword %r into field. Join on '%s'"
" not permitted." % (names[pos + 1], name)
)
break
return path, final_field, targets, names[pos + 1 :]
def output_field(self)
django.db.models.sql.query.Query
django.db.models.sql.query.Query
Return the output type of this expressions.
django.db.models.expressions.BaseExpression
Return the output type of this expressions.
def prefix_references(self, prefix)
django.db.models.expressions.BaseExpression
def prefix_references(self, prefix):
clone = self.copy()
clone.set_source_expressions(
[
(
F(f"{prefix}{expr.name}")
if isinstance(expr, F)
else expr.prefix_references(prefix)
)
for expr in self.get_source_expressions()
]
)
return clone
def promote_joins(self, aliases)
django.db.models.sql.query.Query
Promote recursively the join type of given aliases and its children to an outer join. If 'unconditional' is False, only promote the join if it is nullable or the parent join is an outer join. The children promotion is done to avoid join chains that contain a LOUTER b INNER c. So, if we have currently a INNER b INNER c and a->b is promoted, then we must also promote b->c automatically, or otherwise the promotion of a->b doesn't actually change anything in the query results.
def promote_joins(self, aliases):
"""
Promote recursively the join type of given aliases and its children to
an outer join. If 'unconditional' is False, only promote the join if
it is nullable or the parent join is an outer join.
The children promotion is done to avoid join chains that contain a LOUTER
b INNER c. So, if we have currently a INNER b INNER c and a->b is promoted,
then we must also promote b->c automatically, or otherwise the promotion
of a->b doesn't actually change anything in the query results.
"""
aliases = list(aliases)
while aliases:
alias = aliases.pop(0)
if self.alias_map[alias].join_type is None:
# This is the base table (first FROM entry) - this table
# isn't really joined at all in the query, so we should not
# alter its join type.
continue
# Only the first alias (skipped above) should have None join_type
assert self.alias_map[alias].join_type is not None
parent_alias = self.alias_map[alias].parent_alias
parent_louter = (
parent_alias and self.alias_map[parent_alias].join_type == LOUTER
)
already_louter = self.alias_map[alias].join_type == LOUTER
if (self.alias_map[alias].nullable or parent_louter) and not already_louter:
self.alias_map[alias] = self.alias_map[alias].promote()
# Join type of 'alias' changed, so re-examine all aliases that
# refer to this one.
aliases.extend(
join
for join in self.alias_map
if self.alias_map[join].parent_alias == alias
and join not in aliases
)
def ref_alias(self, alias)
django.db.models.sql.query.Query
Increases the reference count for this alias.
def ref_alias(self, alias):
"""Increases the reference count for this alias."""
self.alias_refcount[alias] += 1
def relabeled_clone(self, change_map)
django.db.models.sql.query.Query
django.db.models.sql.query.Query
def relabeled_clone(self, change_map):
clone = self.clone()
clone.change_aliases(change_map)
return clone
django.db.models.expressions.BaseExpression
def relabeled_clone(self, change_map):
clone = self.copy()
clone.set_source_expressions(
[
e.relabeled_clone(change_map) if e is not None else None
for e in self.get_source_expressions()
]
)
return clone
def replace_expressions(self, replacements)
django.db.models.expressions.BaseExpression
def replace_expressions(self, replacements):
if replacement := replacements.get(self):
return replacement
clone = self.copy()
source_expressions = clone.get_source_expressions()
clone.set_source_expressions(
[
expr.replace_expressions(replacements) if expr else None
for expr in source_expressions
]
)
return clone
def reset_refcounts(self, to_counts)
django.db.models.sql.query.Query
Reset reference counts for aliases so that they match the value passed in `to_counts`.
def reset_refcounts(self, to_counts):
"""
Reset reference counts for aliases so that they match the value passed
in `to_counts`.
"""
for alias, cur_refcount in self.alias_refcount.copy().items():
unref_amount = cur_refcount - to_counts.get(alias, 0)
self.unref_alias(alias, unref_amount)
def resolve_expression(self, query, *args, **kwargs)
django.db.models.sql.query.Query
django.db.models.sql.query.Query
Provide the chance to do any preprocessing or validation before being added to the query. Arguments: * query: the backend query implementation * allow_joins: boolean allowing or denying use of joins in this query * reuse: a set of reusable joins for multijoins * summarize: a terminal aggregate clause * for_save: whether this expression about to be used in a save or update Return: an Expression to be added to the query.
def resolve_expression(self, query, *args, **kwargs):
clone = self.clone()
# Subqueries need to use a different set of aliases than the outer query.
clone.bump_prefix(query)
clone.subquery = True
clone.where.resolve_expression(query, *args, **kwargs)
# Resolve combined queries.
if clone.combinator:
clone.combined_queries = tuple(
[
combined_query.resolve_expression(query, *args, **kwargs)
for combined_query in clone.combined_queries
]
)
for key, value in clone.annotations.items():
resolved = value.resolve_expression(query, *args, **kwargs)
if hasattr(resolved, "external_aliases"):
resolved.external_aliases.update(clone.external_aliases)
clone.annotations[key] = resolved
# Outer query's aliases are considered external.
for alias, table in query.alias_map.items():
clone.external_aliases[alias] = (
isinstance(table, Join)
and table.join_field.related_model._meta.db_table != alias
) or (
isinstance(table, BaseTable) and table.table_name != table.table_alias
)
return clone
django.db.models.expressions.BaseExpression
Provide the chance to do any preprocessing or validation before being added to the query. Arguments: * query: the backend query implementation * allow_joins: boolean allowing or denying use of joins in this query * reuse: a set of reusable joins for multijoins * summarize: a terminal aggregate clause * for_save: whether this expression about to be used in a save or update Return: an Expression to be added to the query.
def resolve_expression(
self, query=None, allow_joins=True, reuse=None, summarize=False, for_save=False
):
"""
Provide the chance to do any preprocessing or validation before being
added to the query.
Arguments:
* query: the backend query implementation
* allow_joins: boolean allowing or denying use of joins
in this query
* reuse: a set of reusable joins for multijoins
* summarize: a terminal aggregate clause
* for_save: whether this expression about to be used in a save or update
Return: an Expression to be added to the query.
"""
c = self.copy()
c.is_summary = summarize
c.set_source_expressions(
[
(
expr.resolve_expression(query, allow_joins, reuse, summarize)
if expr
else None
)
for expr in c.get_source_expressions()
]
)
return c
def resolve_lookup_value(self, value, can_reuse, allow_joins, summarize=False)
django.db.models.sql.query.Query
def resolve_lookup_value(self, value, can_reuse, allow_joins, summarize=False):
if hasattr(value, "resolve_expression"):
value = value.resolve_expression(
self,
reuse=can_reuse,
allow_joins=allow_joins,
summarize=summarize,
)
elif isinstance(value, (list, tuple)):
# The items of the iterable may be expressions and therefore need
# to be resolved independently.
values = (
self.resolve_lookup_value(sub_value, can_reuse, allow_joins)
for sub_value in value
)
type_ = type(value)
if hasattr(type_, "_make"): # namedtuple
return type_(*values)
return type_(values)
return value
def resolve_ref(self, name, allow_joins=True, reuse=None, summarize=False)
django.db.models.sql.query.Query
def resolve_ref(self, name, allow_joins=True, reuse=None, summarize=False):
annotation = self.annotations.get(name)
if annotation is not None:
if not allow_joins:
for alias in self._gen_col_aliases([annotation]):
if isinstance(self.alias_map[alias], Join):
raise FieldError(
"Joined field references are not permitted in this query"
)
if summarize:
# Summarize currently means we are doing an aggregate() query
# which is executed as a wrapped subquery if any of the
# aggregate() elements reference an existing annotation. In
# that case we need to return a Ref to the subquery's annotation.
if name not in self.annotation_select:
raise FieldError(
"Cannot aggregate over the '%s' alias. Use annotate() "
"to promote it." % name
)
return Ref(name, self.annotation_select[name])
else:
return annotation
else:
field_list = name.split(LOOKUP_SEP)
annotation = self.annotations.get(field_list[0])
if annotation is not None:
for transform in field_list[1:]:
annotation = self.try_transform(annotation, transform)
return annotation
join_info = self.setup_joins(
field_list, self.get_meta(), self.get_initial_alias(), can_reuse=reuse
)
targets, final_alias, join_list = self.trim_joins(
join_info.targets, join_info.joins, join_info.path
)
if not allow_joins and len(join_list) > 1:
raise FieldError(
"Joined field references are not permitted in this query"
)
if len(targets) > 1:
raise FieldError(
"Referencing multicolumn fields with F() objects isn't supported"
)
# Verify that the last lookup in name is a field or a transform:
# transform_function() raises FieldError if not.
transform = join_info.transform_function(targets[0], final_alias)
if reuse is not None:
reuse.update(join_list)
return transform
def reverse_ordering(self)
django.db.models.expressions.BaseExpression
def reverse_ordering(self):
return self
def select_format(self, compiler, sql, params)
django.db.models.expressions.BaseExpression
Custom format for select clauses. For example, EXISTS expressions need to be wrapped in CASE WHEN on Oracle.
def select_format(self, compiler, sql, params):
"""
Custom format for select clauses. For example, EXISTS expressions need
to be wrapped in CASE WHEN on Oracle.
"""
if hasattr(self.output_field, "select_format"):
return self.output_field.select_format(compiler, sql, params)
return sql, params
def set_annotation_mask(self, names)
django.db.models.sql.query.Query
Set the mask of annotations that will be returned by the SELECT.
def set_annotation_mask(self, names):
"""Set the mask of annotations that will be returned by the SELECT."""
if names is None:
self.annotation_select_mask = None
else:
self.annotation_select_mask = list(dict.fromkeys(names))
self._annotation_select_cache = None
def set_empty(self)
django.db.models.sql.query.Query
def set_empty(self):
self.where.add(NothingNode(), AND)
for query in self.combined_queries:
query.set_empty()
def set_extra_mask(self, names)
django.db.models.sql.query.Query
Set the mask of extra select items that will be returned by SELECT. Don't remove them from the Query since they might be used later.
def set_extra_mask(self, names):
"""
Set the mask of extra select items that will be returned by SELECT.
Don't remove them from the Query since they might be used later.
"""
if names is None:
self.extra_select_mask = None
else:
self.extra_select_mask = set(names)
self._extra_select_cache = None
def set_group_by(self, allow_aliases=True)
django.db.models.sql.query.Query
Expand the GROUP BY clause required by the query. This will usually be the set of all non-aggregate fields in the return data. If the database backend supports grouping by the primary key, and the query would be equivalent, the optimization will be made automatically.
def set_group_by(self, allow_aliases=True):
"""
Expand the GROUP BY clause required by the query.
This will usually be the set of all non-aggregate fields in the
return data. If the database backend supports grouping by the
primary key, and the query would be equivalent, the optimization
will be made automatically.
"""
if allow_aliases and self.values_select:
# If grouping by aliases is allowed assign selected value aliases
# by moving them to annotations.
group_by_annotations = {}
values_select = {}
for alias, expr in zip(self.values_select, self.select):
if isinstance(expr, Col):
values_select[alias] = expr
else:
group_by_annotations[alias] = expr
self.annotations = {**group_by_annotations, **self.annotations}
self.append_annotation_mask(group_by_annotations)
self.select = tuple(values_select.values())
self.values_select = tuple(values_select)
group_by = list(self.select)
for alias, annotation in self.annotation_select.items():
if not (group_by_cols := annotation.get_group_by_cols()):
continue
if allow_aliases and not annotation.contains_aggregate:
group_by.append(Ref(alias, annotation))
else:
group_by.extend(group_by_cols)
self.group_by = tuple(group_by)
def set_limits(self, low=None, high=None)
django.db.models.sql.query.Query
Adjust the limits on the rows retrieved. Use low/high to set these, as it makes it more Pythonic to read and write. When the SQL query is created, convert them to the appropriate offset and limit values. Apply any limits passed in here to the existing constraints. Add low to the current low value and clamp both to any existing high value.
def set_limits(self, low=None, high=None):
"""
Adjust the limits on the rows retrieved. Use low/high to set these,
as it makes it more Pythonic to read and write. When the SQL query is
created, convert them to the appropriate offset and limit values.
Apply any limits passed in here to the existing constraints. Add low
to the current low value and clamp both to any existing high value.
"""
if high is not None:
if self.high_mark is not None:
self.high_mark = min(self.high_mark, self.low_mark + high)
else:
self.high_mark = self.low_mark + high
if low is not None:
if self.high_mark is not None:
self.low_mark = min(self.high_mark, self.low_mark + low)
else:
self.low_mark = self.low_mark + low
if self.low_mark == self.high_mark:
self.set_empty()
def set_select(self, cols)
django.db.models.sql.query.Query
def set_select(self, cols):
self.default_cols = False
self.select = tuple(cols)
def set_source_expressions(self, exprs)
django.db.models.expressions.BaseExpression
def set_source_expressions(self, exprs):
assert not exprs
def set_values(self, fields)
django.db.models.sql.query.Query
def set_values(self, fields):
self.select_related = False
self.clear_deferred_loading()
self.clear_select_fields()
self.has_select_fields = True
if fields:
field_names = []
extra_names = []
annotation_names = []
if not self.extra and not self.annotations:
# Shortcut - if there are no extra or annotations, then
# the values() clause must be just field names.
field_names = list(fields)
else:
self.default_cols = False
for f in fields:
if f in self.extra_select:
extra_names.append(f)
elif f in self.annotation_select:
annotation_names.append(f)
elif f in self.annotations:
raise FieldError(
f"Cannot select the '{f}' alias. Use annotate() to "
"promote it."
)
else:
# Call `names_to_path` to ensure a FieldError including
# annotations about to be masked as valid choices if
# `f` is not resolvable.
if self.annotation_select:
self.names_to_path(f.split(LOOKUP_SEP), self.model._meta)
field_names.append(f)
self.set_extra_mask(extra_names)
self.set_annotation_mask(annotation_names)
selected = frozenset(field_names + extra_names + annotation_names)
else:
field_names = [f.attname for f in self.model._meta.concrete_fields]
selected = frozenset(field_names)
# Selected annotations must be known before setting the GROUP BY
# clause.
if self.group_by is True:
self.add_fields(
(f.attname for f in self.model._meta.concrete_fields), False
)
# Disable GROUP BY aliases to avoid orphaning references to the
# SELECT clause which is about to be cleared.
self.set_group_by(allow_aliases=False)
self.clear_select_fields()
elif self.group_by:
# Resolve GROUP BY annotation references if they are not part of
# the selected fields anymore.
group_by = []
for expr in self.group_by:
if isinstance(expr, Ref) and expr.refs not in selected:
expr = self.annotations[expr.refs]
group_by.append(expr)
self.group_by = tuple(group_by)
self.values_select = tuple(field_names)
self.add_fields(field_names, True)
def setup_joins(self, names, opts, alias, can_reuse=None, allow_many=True)
django.db.models.sql.query.Query
Compute the necessary table joins for the passage through the fields given in 'names'. 'opts' is the Options class for the current model (which gives the table we are starting from), 'alias' is the alias for the table to start the joining from. The 'can_reuse' defines the reverse foreign key joins we can reuse. It can be None in which case all joins are reusable or a set of aliases that can be reused. Note that non-reverse foreign keys are always reusable when using setup_joins(). If 'allow_many' is False, then any reverse foreign key seen will generate a MultiJoin exception. Return the final field involved in the joins, the target field (used for any 'where' constraint), the final 'opts' value, the joins, the field path traveled to generate the joins, and a transform function that takes a field and alias and is equivalent to `field.get_col(alias)` in the simple case but wraps field transforms if they were included in names. The target field is the field containing the concrete value. Final field can be something different, for example foreign key pointing to that value. Final field is needed for example in some value conversions (convert 'obj' in fk__id=obj to pk val using the foreign key field for example).
def setup_joins(
self,
names,
opts,
alias,
can_reuse=None,
allow_many=True,
):
"""
Compute the necessary table joins for the passage through the fields
given in 'names'. 'opts' is the Options class for the current model
(which gives the table we are starting from), 'alias' is the alias for
the table to start the joining from.
The 'can_reuse' defines the reverse foreign key joins we can reuse. It
can be None in which case all joins are reusable or a set of aliases
that can be reused. Note that non-reverse foreign keys are always
reusable when using setup_joins().
If 'allow_many' is False, then any reverse foreign key seen will
generate a MultiJoin exception.
Return the final field involved in the joins, the target field (used
for any 'where' constraint), the final 'opts' value, the joins, the
field path traveled to generate the joins, and a transform function
that takes a field and alias and is equivalent to `field.get_col(alias)`
in the simple case but wraps field transforms if they were included in
names.
The target field is the field containing the concrete value. Final
field can be something different, for example foreign key pointing to
that value. Final field is needed for example in some value
conversions (convert 'obj' in fk__id=obj to pk val using the foreign
key field for example).
"""
joins = [alias]
# The transform can't be applied yet, as joins must be trimmed later.
# To avoid making every caller of this method look up transforms
# directly, compute transforms here and create a partial that converts
# fields to the appropriate wrapped version.
def final_transformer(field, alias):
if not self.alias_cols:
alias = None
return field.get_col(alias)
# Try resolving all the names as fields first. If there's an error,
# treat trailing names as lookups until a field can be resolved.
last_field_exception = None
for pivot in range(len(names), 0, -1):
try:
path, final_field, targets, rest = self.names_to_path(
names[:pivot],
opts,
allow_many,
fail_on_missing=True,
)
except FieldError as exc:
if pivot == 1:
# The first item cannot be a lookup, so it's safe
# to raise the field error here.
raise
else:
last_field_exception = exc
else:
# The transforms are the remaining items that couldn't be
# resolved into fields.
transforms = names[pivot:]
break
for name in transforms:
def transform(field, alias, *, name, previous):
try:
wrapped = previous(field, alias)
return self.try_transform(wrapped, name)
except FieldError:
# FieldError is raised if the transform doesn't exist.
if isinstance(final_field, Field) and last_field_exception:
raise last_field_exception
else:
raise
final_transformer = functools.partial(
transform, name=name, previous=final_transformer
)
final_transformer.has_transforms = True
# Then, add the path to the query's joins. Note that we can't trim
# joins at this stage - we will need the information about join type
# of the trimmed joins.
for join in path:
if join.filtered_relation:
filtered_relation = join.filtered_relation.clone()
table_alias = filtered_relation.alias
else:
filtered_relation = None
table_alias = None
opts = join.to_opts
if join.direct:
nullable = self.is_nullable(join.join_field)
else:
nullable = True
connection = self.join_class(
opts.db_table,
alias,
table_alias,
INNER,
join.join_field,
nullable,
filtered_relation=filtered_relation,
)
reuse = can_reuse if join.m2m else None
alias = self.join(connection, reuse=reuse)
joins.append(alias)
return JoinInfo(final_field, targets, opts, joins, path, final_transformer)
def solve_lookup_type(self, lookup, summarize=False)
django.db.models.sql.query.Query
Solve the lookup type from the lookup (e.g.: 'foobar__id__icontains').
def solve_lookup_type(self, lookup, summarize=False):
"""
Solve the lookup type from the lookup (e.g.: 'foobar__id__icontains').
"""
lookup_splitted = lookup.split(LOOKUP_SEP)
if self.annotations:
annotation, expression_lookups = refs_expression(
lookup_splitted, self.annotations
)
if annotation:
expression = self.annotations[annotation]
if summarize:
expression = Ref(annotation, expression)
return expression_lookups, (), expression
_, field, _, lookup_parts = self.names_to_path(lookup_splitted, self.get_meta())
field_parts = lookup_splitted[0 : len(lookup_splitted) - len(lookup_parts)]
if len(lookup_parts) > 1 and not field_parts:
raise FieldError(
'Invalid lookup "%s" for model %s".'
% (lookup, self.get_meta().model.__name__)
)
return lookup_parts, field_parts, False
def split_exclude(self, filter_expr, can_reuse, names_with_path)
django.db.models.sql.query.Query
When doing an exclude against any kind of N-to-many relation, we need to use a subquery. This method constructs the nested query, given the original exclude filter (filter_expr) and the portion up to the first N-to-many relation field. For example, if the origin filter is ~Q(child__name='foo'), filter_expr is ('child__name', 'foo') and can_reuse is a set of joins usable for filters in the original query. We will turn this into equivalent of: WHERE NOT EXISTS( SELECT 1 FROM child WHERE name = 'foo' AND child.parent_id = parent.id LIMIT 1 )
def split_exclude(self, filter_expr, can_reuse, names_with_path):
"""
When doing an exclude against any kind of N-to-many relation, we need
to use a subquery. This method constructs the nested query, given the
original exclude filter (filter_expr) and the portion up to the first
N-to-many relation field.
For example, if the origin filter is ~Q(child__name='foo'), filter_expr
is ('child__name', 'foo') and can_reuse is a set of joins usable for
filters in the original query.
We will turn this into equivalent of:
WHERE NOT EXISTS(
SELECT 1
FROM child
WHERE name = 'foo' AND child.parent_id = parent.id
LIMIT 1
)
"""
# Generate the inner query.
query = self.__class__(self.model)
query._filtered_relations = self._filtered_relations
filter_lhs, filter_rhs = filter_expr
if isinstance(filter_rhs, OuterRef):
filter_rhs = OuterRef(filter_rhs)
elif isinstance(filter_rhs, F):
filter_rhs = OuterRef(filter_rhs.name)
query.add_filter(filter_lhs, filter_rhs)
query.clear_ordering(force=True)
# Try to have as simple as possible subquery -> trim leading joins from
# the subquery.
trimmed_prefix, contains_louter = query.trim_start(names_with_path)
col = query.select[0]
select_field = col.target
alias = col.alias
if alias in can_reuse:
pk = select_field.model._meta.pk
# Need to add a restriction so that outer query's filters are in effect for
# the subquery, too.
query.bump_prefix(self)
lookup_class = select_field.get_lookup("exact")
# Note that the query.select[0].alias is different from alias
# due to bump_prefix above.
lookup = lookup_class(pk.get_col(query.select[0].alias), pk.get_col(alias))
query.where.add(lookup, AND)
query.external_aliases[alias] = True
else:
lookup_class = select_field.get_lookup("exact")
lookup = lookup_class(col, ResolvedOuterRef(trimmed_prefix))
query.where.add(lookup, AND)
condition, needed_inner = self.build_filter(Exists(query))
if contains_louter:
or_null_condition, _ = self.build_filter(
("%s__isnull" % trimmed_prefix, True),
current_negated=True,
branch_negated=True,
can_reuse=can_reuse,
)
condition.add(or_null_condition, OR)
# Note that the end result will be:
# NOT EXISTS (inner_q) OR outercol IS NULL
# this might look crazy but due to how NULL works, this seems to be
# correct. If the IS NULL check is removed, then if outercol
# IS NULL we will not match the row.
return condition, needed_inner
def sql_with_params(self)
django.db.models.sql.query.Query
Return the query as an SQL string and the parameters that will be substituted into the query.
def sql_with_params(self):
"""
Return the query as an SQL string and the parameters that will be
substituted into the query.
"""
return self.get_compiler(DEFAULT_DB_ALIAS).as_sql()
def table_alias(self, table_name, create=False, filtered_relation=None)
django.db.models.sql.query.Query
Return a table alias for the given table_name and whether this is a new alias or not. If 'create' is true, a new alias is always created. Otherwise, the most recently created alias for the table (if one exists) is reused.
def table_alias(self, table_name, create=False, filtered_relation=None):
"""
Return a table alias for the given table_name and whether this is a
new alias or not.
If 'create' is true, a new alias is always created. Otherwise, the
most recently created alias for the table (if one exists) is reused.
"""
alias_list = self.table_map.get(table_name)
if not create and alias_list:
alias = alias_list[0]
self.alias_refcount[alias] += 1
return alias, False
# Create a new alias for this table.
if alias_list:
alias = "%s%d" % (self.alias_prefix, len(self.alias_map) + 1)
alias_list.append(alias)
else:
# The first occurrence of a table uses the table name directly.
alias = (
filtered_relation.alias if filtered_relation is not None else table_name
)
self.table_map[table_name] = [alias]
self.alias_refcount[alias] = 1
return alias, True
def trim_joins(self, targets, joins, path)
django.db.models.sql.query.Query
The 'target' parameter is the final field being joined to, 'joins' is the full list of join aliases. The 'path' contain the PathInfos used to create the joins. Return the final target field and table alias and the new active joins. Always trim any direct join if the target column is already in the previous table. Can't trim reverse joins as it's unknown if there's anything on the other side of the join.
def trim_joins(self, targets, joins, path):
"""
The 'target' parameter is the final field being joined to, 'joins'
is the full list of join aliases. The 'path' contain the PathInfos
used to create the joins.
Return the final target field and table alias and the new active
joins.
Always trim any direct join if the target column is already in the
previous table. Can't trim reverse joins as it's unknown if there's
anything on the other side of the join.
"""
joins = joins[:]
for pos, info in enumerate(reversed(path)):
if len(joins) == 1 or not info.direct:
break
if info.filtered_relation:
break
join_targets = {t.column for t in info.join_field.foreign_related_fields}
cur_targets = {t.column for t in targets}
if not cur_targets.issubset(join_targets):
break
targets_dict = {
r[1].column: r[0]
for r in info.join_field.related_fields
if r[1].column in cur_targets
}
targets = tuple(targets_dict[t.column] for t in targets)
self.unref_alias(joins.pop())
return targets, joins[-1], joins
def trim_start(self, names_with_path)
django.db.models.sql.query.Query
Trim joins from the start of the join path. The candidates for trim are the PathInfos in names_with_path structure that are m2m joins. Also set the select column so the start matches the join. This method is meant to be used for generating the subquery joins & cols in split_exclude(). Return a lookup usable for doing outerq.filter(lookup=self) and a boolean indicating if the joins in the prefix contain a LEFT OUTER join. _
def trim_start(self, names_with_path):
"""
Trim joins from the start of the join path. The candidates for trim
are the PathInfos in names_with_path structure that are m2m joins.
Also set the select column so the start matches the join.
This method is meant to be used for generating the subquery joins &
cols in split_exclude().
Return a lookup usable for doing outerq.filter(lookup=self) and a
boolean indicating if the joins in the prefix contain a LEFT OUTER join.
_"""
all_paths = []
for _, paths in names_with_path:
all_paths.extend(paths)
contains_louter = False
# Trim and operate only on tables that were generated for
# the lookup part of the query. That is, avoid trimming
# joins generated for F() expressions.
lookup_tables = [
t for t in self.alias_map if t in self._lookup_joins or t == self.base_table
]
for trimmed_paths, path in enumerate(all_paths):
if path.m2m:
break
if self.alias_map[lookup_tables[trimmed_paths + 1]].join_type == LOUTER:
contains_louter = True
alias = lookup_tables[trimmed_paths]
self.unref_alias(alias)
# The path.join_field is a Rel, lets get the other side's field
join_field = path.join_field.field
# Build the filter prefix.
paths_in_prefix = trimmed_paths
trimmed_prefix = []
for name, path in names_with_path:
if paths_in_prefix - len(path) < 0:
break
trimmed_prefix.append(name)
paths_in_prefix -= len(path)
trimmed_prefix.append(join_field.foreign_related_fields[0].name)
trimmed_prefix = LOOKUP_SEP.join(trimmed_prefix)
# Lets still see if we can trim the first join from the inner query
# (that is, self). We can't do this for:
# - LEFT JOINs because we would miss those rows that have nothing on
# the outer side,
# - INNER JOINs from filtered relations because we would miss their
# filters.
first_join = self.alias_map[lookup_tables[trimmed_paths + 1]]
if first_join.join_type != LOUTER and not first_join.filtered_relation:
select_fields = [r[0] for r in join_field.related_fields]
select_alias = lookup_tables[trimmed_paths + 1]
self.unref_alias(lookup_tables[trimmed_paths])
extra_restriction = join_field.get_extra_restriction(
None, lookup_tables[trimmed_paths + 1]
)
if extra_restriction:
self.where.add(extra_restriction, AND)
else:
# TODO: It might be possible to trim more joins from the start of the
# inner query if it happens to have a longer join chain containing the
# values in select_fields. Lets punt this one for now.
select_fields = [r[1] for r in join_field.related_fields]
select_alias = lookup_tables[trimmed_paths]
# The found starting point is likely a join_class instead of a
# base_table_class reference. But the first entry in the query's FROM
# clause must not be a JOIN.
for table in self.alias_map:
if self.alias_refcount[table] > 0:
self.alias_map[table] = self.base_table_class(
self.alias_map[table].table_name,
table,
)
break
self.set_select([f.get_col(select_alias) for f in select_fields])
return trimmed_prefix, contains_louter
def try_transform(self, lhs, name)
django.db.models.sql.query.Query
Helper method for build_lookup(). Try to fetch and initialize a transform for name parameter from lhs.
def try_transform(self, lhs, name):
"""
Helper method for build_lookup(). Try to fetch and initialize
a transform for name parameter from lhs.
"""
transform_class = lhs.get_transform(name)
if transform_class:
return transform_class(lhs)
else:
output_field = lhs.output_field.__class__
suggested_lookups = difflib.get_close_matches(
name, lhs.output_field.get_lookups()
)
if suggested_lookups:
suggestion = ", perhaps you meant %s?" % " or ".join(suggested_lookups)
else:
suggestion = "."
raise FieldError(
"Unsupported lookup '%s' for %s or join on the field not "
"permitted%s" % (name, output_field.__name__, suggestion)
)
def unref_alias(self, alias, amount=1)
django.db.models.sql.query.Query
Decreases the reference count for this alias.
def unref_alias(self, alias, amount=1):
"""Decreases the reference count for this alias."""
self.alias_refcount[alias] -= amount